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PSl Hamiltonian/EQOM in n dimensions

Hamilton function with symmetric 2 n x 2 n-matrix A:

1
Hamiltonian H = 5 ,(pT A ¢ )
where ¢ = (q1,p1, .- -, qn, Pn)". Equations of Motion
al (EQOM)
. _  OH . _ _0H
9 = op Pi = Toq
Y = nVyH
= NAY=Fy,

where the symplectic unit matrix 7y has the structure:

0 1
-1 0
Yo = 0 1
—1 0

o < z =, = 9ac
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Decoupled Systems

Hamiltonian

If the matrix A is diagonal, then the Hamiltonian is decoupled

q, Pi
- 3o av=3 (69
Corresponding force matrix F =~ A

’)
1
0 2my
_k
v =

5 0

0 _1
_k
With appropriate scaling of g; and p;
F has the form:

0 w1
—w1 0

Y0 =

form

0 wy
—w> 0

Decoupled force matrix
We call this the standard form and the normalized standard

[m]

=

= = = 9ac
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Hamiltonian

Given a quadradic Hamiltonian in n dimensions:

o

Strategy: Take 2 degrees of freedom (i.e. 4 x 4-submatrix)
and ignore all other rows/columns.

That is: We split the matrix in 2 x 2 blocks and
diagonalize sequentially pairs of these blocks.

As a consequence, it is sufficient to consider symplectic
transformations of two degrees of freedom, i.e. the
required matrices are 4 x 4.

There are ten symplectic transformations in two
dimensions. The structure of the 4 x 4 can be represented
by the real Dirac matrices (RDMs) [3].

We use the notation introduced as electromechanical
equivalence (EMEQ) [3].



ESl

Symplectic

Dssupi Why Dirac matrices? Aren't they only useful in Quantum
C.Baumgarten mechanics?

o

Real Dirac
Matrices
(RDMs)

The system of the 16 real Dirac matrices is complete: Any
real-valued 4 x 4-matrix M can be written as a linear
combination of RDMs.

The real matrix 7 can be identified with the symplectic
unit matrix.

All real Dirac matrices (RDMs) are either symplectic or
“anti-symplectic”.

All RDMs square to + 1.

All RDMs are either Hamiltonian or skew-Hamiltonian
(“symplices” or “anti-symplices").

All RDMs are either symmetric or skew-symmetric.

All RDMs are either even (i.e. block-diagonal) or odd.
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Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanical
Equivalence
(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

@ All RDMs - except for the unit matrix - have zero trace.
@ Two RDMs either commute or anti-commute.
@ The RDMs form a group.

@ The Hamiltonian RDMs (“symplices”) are the generators
of symplectic transformations. (A subset of these are the
generators of Lorentz transformations.)

To conclude: The RDMs are the matrix-basis for coupling of
symplectic systems.

Any arbitrary realvalued 4 x 4-matrix M as a linear
combination of RDMs:

15
M= Z my Yk -
k=0
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Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanical
Equivalence

(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

The RDM-coefficients my can be computed by
my = sign(vx) Tr(M~x + v« M)/8,

where Tr(X) is the trace of X and sign(vx) is the signature of
Yk, i.€.:
sign(yi) = Tr(73)/4 = +1.

Note: Antisymmetric RDMs (70,77 .. .79, Y10 and 714) have a
negative signature, symmetric RDMs a positive.
Force matrices F must fulfill FT = ~o F~o and are restricted to:

9
F:Z fk'yk.
k=0



ESl

Symplectic
Decoupling

C.Baumgarten

Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanical
Equivalence

(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

The real Dirac matrices for the use in classical mechanics:

Yo Yo + W Y = —28uw = 2Diag(-1,1,1,1).

(Dirac matrices with real numbers are only possible with the

negative "metric tensor”.)

The remaining matrices are
Y14 = YoY17273;
Y4 = Y0 71:
5= 70 Y2;
Y6 = 70 735
Y10 = Y14 Yo =
Y1 = Y14 M1 =
Y12 = Y14 72 =
713 = Y14 V3 =

Note: v5 # 701 72 73 but

defined by

Y15
Y7
V8
Yo

V17273
Y0273
Yo V3 N
Y0172

instead 14

= 1

Y1401 = 7273
Y14Yo Y2 = Y3 M
Y140 7V3 = V172

= Y071 723!
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Define symplex to be the generator of a symplectic
transformation. Basic symplices are g . . . 9.
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Hamiltonian The effect of a basic symplex vy, is given by:

Real Dirac

D Ry = exp(15/2) |

Electromechanical — 1 cos (6/2) + ,yb sin (6/2) fOI‘ ’yg = _1
Equivalence 1 cosh(e/2) + 75 sinh (e/2) for ~2=1

(EMEQ)

Symplectic Rb_l €xp (_,Yb 6/2)
Decoupling _ 1 cos (g/2) — 75 sin(£/2) for v2=-1
The Transfer 1 COSh (6/2) — b Sinh (6/2) fOr ,Y[% =1
Matrix

Transformations with 712) = —1 are orthogonal transformations,
i.e. rotations about angle ¢, while those with vi =1 are boosts

with “rapidity” e.

Exactly analogue to transformation properties of Dirac spinors!
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Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanid

Equivalence
(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

EMEQ: What is it? What is it good for?
@ 10 components of symmetric 4 x 4-matrix A in
Hamiltonian H = 14T Av.
9
10 components in force matrix F =y A = > fi k.
k=0
10 symplectic transformations generated by 7. . . 7o.

10 elements in o-matrix.

10 physical quantities in relativistic electrodynamics:
Energy + 3 x Momentum + 6 e.m. fields components.

EMEQ: Transformation properties of those 10 components are
identical to those of then 10 physical quantities of Lorentz
force equation: &, p, E, B =4 components of 4-vector + 6
“bivectors” of e.m. field. But: Let’s pretend that this
equivalence is formal (for the moment). The components
behave as if. Benefit: Meaningful nomenclature for the
RDM-coefficients.
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Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanid

Equivalence
(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

The most general force matrix F in two Dimensions can be
written according to the EMEQ as:

F p—

“E.  E +B,

| E-B E,

= | g+8. B,
B, —E +B,
P, £-P,

_e—p, P,
+ 0 P,
P, 0

Evo+PF+EvT+Byand

E,— B, By
-B, —E,—B,
E, E,-B,
E.+ B, —E,
0 Py
-P, 0
-P, £+ Py
—&+ Py P,

Bringing F to block-diagonal form then means to find a
symplectic transformation R with F/ = RF R~ such that F’

has standard form, or: E| = E| =

B, =B,=P,=P,=0.

Remaining: “Energy” &, Py, B, and E,. = orthogonalization

—

of (P, E, B) required [5].

33



Ps1 Symplectic Transformations |l

H = H

Y = Ry _

Vo= (@7 0) = oR

F = RFR!
o M = RMR™

(EMEQ)

The symplectic transformations generated by the ten RDMs
Yo - ..o are

@ 7o: phase rotation.

@ 7 (71, 72 and 73): phase boost along x, y, z.

@ 74, 75 and vg: Lorentz boost along x, y, z.

@ 77, 78 and ~yg: Spatial rotation about x-, y-, z-axis.
Rotations and Lorentz boosts are well known.

o = = = = 9ac
13/33
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What do “phase rotations” and “phase boosts”?
The “phase rotation” Rq gives & = £ and B’ = B, but:

P' = coseP —sineE
Electromechanid E, = C(CO0Ss¢ E + sine P
Equivalence
(EMEQ)

The “phase boosts” Ry k € [1 — 3] are like Lorentz boosts, but
with E and P exchanged. Hence they are identical to a
sequence of 90° phase rotation + Lorentz boost + 90° inverse
phase rotation.

o Lorentz boosts: E B and E2 — B2 are invariant.

@ Phase boosts: P B and P2 — B2 are invariant.

14 /33



PsI  Decoupling

The standard form of the decoupled force matrix F’ is:

F''=¢&"~v+Pim+E v+ By

0 & —P,+E +B 0 0
_| -&¢-P,+E -8B 0 0 0
- 0 0 0 E; — By +& +P]
0 0 —&' + P +E +B 0
Electromechani
Falialeses We use the abbreviations:
(EMEQ)
- =
M, EB
M BP
g - =
M, EP

and compute the transformation properties of these “mass
components”. The above scalar products are invariant under
spatial rotations. Hence it is sufficient to consider boosts and
the phase rotation.

o = = = = 9ac
15/33
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7 = EP+BxE
g = EE+pxB
b = EBH+EXp
M M, \ A
Yo M,c+ Mgs Mgc—M,s MbC2+P22E S
7 | M, C—(b)S M, My C — (F)x S
Y2 | M C— (E)y S Mg M, C—(7)y S
Y3 M,C*(b)zs Mg MbC—(F)zS
~a M, Mg C+ (b)xS | My C+(&)xS
5| M, | MC+(B),S | MyC+(g),5
V6 Mr Mgc+(b)25 MbC+(g)zS
c = cos(eg) s = sin(eg)
¢ = cos(2¢) s = sin(2¢)
C = cosh(e) S = sinh(e)
G, = cosh(2¢) S; = sinh(2¢)

16
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C.Baumgarten Rb _ exp ("}/b 8/2)
@ Mg — 0: Make phase rotation using vg and angle
— Mg
e = arctan ().
o b— |B| é,: Align the vector b along the y axis by the
spatial rotations with v7 with e = arctan (& ) and with 7o
Decouplin
— with € = —arctan( ) Such rotations can always be
done.

@ M, — 0: Boost using 7, and rapidity € = artanh(%’)-

The last transformation is only possible, if |[M,| < |by| = |b):

=

(EB)? < —2EB(ExB)+&2B2+E2P?— (EP)?

After the first transformation we have M, = PB=0.

17/33



PS8 Eigenvalues of 2-d System

The eigenvalues of the force matrix F are

A = Diag(iwi, —iwi,iwz, —iwn)
K — 2+E B P
Ky = —2EP(ExB)+&2B?+ E2P?

~ (EP)y — (EB)* - (PB)
w1 = VKi+2VK
Ki—2vVK;

Symplectic
Decoupling W2

Det(F) = K2—4K,

System stable = eigenfrequencies are real:

u]
o)
1
n
it

Do
18/33
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Hamiltonian

Real Dirac
Matrices
(RDMs)

Electromechanical
Equivalence

(EMEQ)

Symplectic
Decoupling

The Transfer
Matrix

The requirement |M,| < |b,| is equal to K> > 0. Eigenvalues
must be real or imaginary, but not off axis in the complex plane.
Then the vector-components (g), and (7),, (b) and (b), are
zero after the decoupling transformations have been applied.
With M, = Mg = 0 we can align B along y-axis so that

B = |B| &, and obtain in total B, = B, = £, = P, = 0.

The transformed force matrix is then block-diagonal:

—E— P, E—Pi+E +B 0 0
p_| —e-Pt+E-B Ec+ P, 0 0
= 0 0 E.— P, E, — B, + £+ Px
0 0 —E+ P+ E +B, P, — E

19/33
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The Transfer
Matrix

In order to bring the block-diagonal force matrix to standard
form, apply the following transformations:

@ My — 0: Use another phase rotation with vy about

€= % arctan (1?22%%2)
@ P, — 0: Use rotation about y-axis with g about
€ = —arctan (%).

After these two rotations, the matrix has normal form, if

K> > 0 holds. In ion beam optics this is usually the case and
therefore we consider this method as a generally applicable
decoupling algorithm.

20/33
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Decoupling the Transfer Matrix |

matrix F.

transfer matrix M?
al
We have:

@ Up to now we always referred to the (average) force
@ What if we don't have the force, but only the (one-turn-)

The Transfer
Matrix

> M

EMNE!

Diag(iwi, —i w1, iwa, —iw>)
— witwr
2

> <

13— i 5
EAE!

5 V4
exp (A7)

Diag(e""l 7', e~ w1 7" elLU2T, e—iw2 7')

Do
21/33



P51 Decoupling the Transfer Matrix Il

Define
- . witws . wWi—w2
= == Aw =

w

so that RDM-coefficients of A:

£ = slanteosan) _ coq(57) cos(Awr)
y, = = (w1 T);s'" (@27) _ gjp (@) cos (AwT)
The Transfer As = sin (WI T)—Sln (wz T) = COS (‘D 7-) S|n (Aw T)
Matrix A, = sl T);ms (@27) _ _ gjn (0T) sin(AwT)
and then:

N = Xcl—iXsy3—iAsva—Acmiz,

o = = = = 9ac
22/33
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Then the transfer matrix can be written as:

C.Baumgarten
M = Y 1-iY,EpE ! /iAEyE - ALEqypE!
F = —i@ERE ! —/iAwEyE™!

Hamiltonian

Real Dirac
Matrices

(RDMs)

et 9 Comparison results: A “part” of the transfer matrix is

Equivalence

S structurally identical to force matrix, but has different

e eigenvalues.

@ Decoupling method does not directly depend on the
eigenvalues.

@ = this part of the transfer matrix can be decoupled with
same method as force matrix.

@ Surprise, surprise: The remaining “part” will be decoupled
with the same transformations.

23/33
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% (M + M—l) - E /\(T)izl\(*"') E-1
= 3(MFyMT )

so that:

9

M, = J(M+9MT )= mew
k=0

= Y EyEl—iAEyE!

Matrix 1 T 15
M = 5(M=7%M" )= > m
k=10
= Y. 1-A, E 1o E-!

Conclusion: We split the transfer matrix and use only the first
10 RDMs for decoupling. The rest can be (and has to be)
ignored.

24 /33



P5l Performance

The Transfer
Matrix

FIgU I'€. Solid line: Number of iterations required to bring a 2 n X 2 n symplex (Hamiltonian matrix) to

normal form. Dashed line: Approximation by 5 ﬂnz;Zl The number ny, of non-diagonal 2 X 2-blocks is

n(n—1
nb=7(2 )|

Fig. 1 shows the average number of iterations that is required
to compute the transformation that brings a 2 n x 2 n symplex

to standard form. o S =, «z=» = 9ac
25/33
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0.0487  3.4674 —02785 0.2587  0.1029 —0.2109
~3.4390 —0.0487 0.4615 —0.3062 —0.3376 0.3446
0.3062 0.2587  0.3280  3.4698  0.3186 —0.2946
04615 02785 —3.5757 —0.3280 0.1402  0.3129
—0.3446 —0.2109 —0.3129 —0.2946 —0.2855 3.5500
~0.3376 —0.1029 0.1402 —0.3186 —3.8665 0.2855
(1)
~0.1484 3.9725 —0.0000 0.0000 0.4744 —0.2566
~3.6134 0.1484 —0.0000 0.0000 —0.1289 0.2831
0.0000 —0.0000 —0.0345 3.6508 0.0358 —0.3001
—0.0000 0.0000 —2.6903 0.0345 —0.0228 0.3030
~0.2831 —0.2566 —0.3030 —0.3001 —0.2855 3.5500
~0.1289 —0.4744 —0.0228 —0.0358 —3.8665 0.2855

()
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—0.2862
—3.8828
0.1181
—0.1261
—0.0000
0.0000

—0.2862
—3.8828
—0.0419
—0.0677
0.1230
—0.0871

4.3793
0.2862
0.1594
—0.1553
—0.0000
0.0000

4.3793
0.2862
—0.0493
—0.0891
0.1633
—0.1045

0.1553
—0.1261
—0.0345
—2.6903
—0.1448
—0.1739

0.0891
—0.0677
0.0285
—3.5022
0.0000
0.0000

0.1594
—0.1181
3.6508
0.0345
—0.1359
—0.1788

—0.0493
0.0419
3.3826

—0.0285
0.0000
0.0000

—0.0000
0.0000
0.1788

—0.1739
0.1125

—3.2672

0.1045
—0.0871
—0.0000

0.0000
—0.3288
—2.8103

—0.0000
0.0000
—0.1359
0.1448
3.4495
—0.1125

0.1633
—0.1230
0.0000
—0.0000
3.3253
0.3288
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—0.1458 4.4771 0.0745 —0.0404 0.0000  0.0000

—3.8103 0.1458 —0.0827 0.0501 0.0000 —0.0000
—0.0501 —0.0404 0.0285 3.3826  0.0064  0.0062

—0.0827 —0.0745 —3.5022 —0.0285 0.0107  0.0111

0.0000  0.0000 —0.0111 0.0062 —0.2413 3.4096

—0.0000 —0.0000 0.0107 —0.0064 —2.6930 0.2413

~0.3160 3.9883 —0.0000 0.0000 —0.0011 —0.0011
~4.3094 03160 —0.0000 0.0000  0.0000 —0.0000

—0.0000 —0.0000 0.0511  3.4809 —0.0034 —0.0039
—0.0000 —0.0000 —3.3898 —0.0511 0.0119  0.0120
0.0000 —0.0011 —0.0120 —0.0039 —0.2413 3.4096
0.0000 0.0011 0.0119 0.0034 —2.6930 0.2413
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~0.3160 3.9883  0.0000 0.0000 0.0007 —0.0014
~4.3094 0.3160 —0.0000 —0.0000 0.0000  0.0000
0.0000  0.0000 —0.0683 3.4297 —0.0000 0.0000
~0.0000 —0.0000 —3.4414 0.0683  0.0000 —0.0000
~0.0000 —0.0014 0.0000 0.0000 —0.0192 2.6195
0.0000 —0.0007 —0.0000 0.0000 —3.4827 0.0192

(7)

~0.0152 3.7947  0.0000 0.0000 0.0000 —0.0000

~4.5030 0.0152 —0.0000 0.0000 0.0000  0.0000
~0.0000 0.0000 —0.0683 3.4297 —0.0000 0.0000
—0.0000 —0.0000 —3.4414 0.0683 0.0000 —0.0000
0.0000  0.0000  0.0000 0.0000 0.3666  2.8225
0.0000  0.0000  0.0000 0.0000 —3.2797 —0.3666

(8)
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The Transfer
Matrix

—0.3432
—4.0602
—0.0000
—0.0000
0.0000
0.0000

—0.3432
—4.0602
0.0000
0.0000
0.0000
—0.0000

4.2375
0.3432
0.0000
0.0000
0.0000
0.0000

4.2375
0.3432
0.0000
—0.0000
0.0000
—0.0000

—0.0000
—0.0000
0.0085
—3.3675
0.0000
0.0000

—0.0000

0.0000
0.0161

—3.5022

0.0000
0.0000

—0.0000
0.0000
3.5035

—0.0085
0.0000
0.0000

0.0000
0.0000
3.3689

—0.0161
—0.0000
—0.0000

—0.0000
0.0000
—0.0000
0.0000
0.3666
—3.2797

0.0000
—0.0000
—0.0000

0.0000
—0.4237
—2.9669

0.0000
—0.0000
0.0000
—0.0000
2.8225
—0.3666

(9)

0.0000
—0.0000
0.0000
0.0000
3.1353
0.4237
(10)
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—0.1563 4.4670 —0.0000 0.0000  0.0000  0.0000
al —3.8307 0.1563 0.0000 —0.0000 —0.0000 —0.0000
0.0000 0.0000 0.0161  3.3689 —0.0000 —0.0000
0.0000 0.0000 —3.5022 —0.0161 0.0000  0.0000
—0.0000 0.0000 0.0000 —0.0000 —0.2121 3.4275
The Transfer 0.0000 0.0000 —0.0000 —-0.0000 —2.6747 0.2121

Matrix

(11)

o = = = = 9ac
31/33
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(]

The general structure of symplectic coupling has been
described using the formalism of the real Dirac matrices
(RDMs).

A straightforward method of decoupling has been derived.

(]

©

The electromechanical equivalence (EMEQ) allows to use
a familiar and meaningful nomenclature.

The Transfer
Matrix

(]

Regular and irregular systems have been described.

(]

Space charge dominated coupling in isochronous
cyclotrons is an example for an irregular system.
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