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Hamiltonian / EQOM

Hamiltonian

Hamilton function with symmetric matrix A:

1
H=§¢TA¢,
where ¢ = (q1,p1, .- -, qn, Pn)". Equations of Motion
(EQOM):
: _ OH
9 = op
v = wVyH

pi Vo
YAy =F,

where 7o has a blockdiagonal skew-symmetric structure:

1
-1 0

Do
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Force-Matrix F

Hamiltonian

Hamilton EQOM:

Y = wAY=Fy
since'yg—:

al

FT = (0A)T =-Av=7F
—v0 and 42 = —1.

We call a matrix F that holds

FT =vF
a symplex. Also called “infinitesimal symplectic” or
“Hamiltonian matrix”
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PSI  o-Matrix / S-Matrix

Matrix of second moments ¢ by RMS:

N
= 1 ;%%T

= 0%

Hamiltonian

EQOM of second moments:

N .
&= % Zl(il)ﬂl),-T + i)
= Fo+oF"
= Fo+ovwFy
Multiplication with g from the right side:

d”)/p = Foyw—ovF
S = FS-SF

[m] = -

DA
5/35




Solution of EQOM for constant F

If the matrix F is constant within [0... 7], then:

v o= Fy
Hamiltonian 1[)(7’) = exp (f th) 1,0(0)
0
= exp(F7)4(0)
= M(7,0)¢(0)

Hence the solution of a piecewise constant F can be written as
a product of the corresponding transfer matrices. The o-matrix
' transforms accordingly:

2=

o(r) =

N
;}%(T)%T(T)

_ 1 imwi(O)w,T<0)MT

o = = = = 9ac
6/35




Matrix Exponential: From F to M

Example: (q1,p1,q2,p2) = (x,x',y,y’), i.e. transversal
coordinates in a horizontally focusing quadrupole:

Hamiltonian 0 1 0 O
2
E o k= 0 0 O
0 0 0 1
0 0 kK2 0
M = exp(F7)
cos k T sinkkT 0 0
B —ksinkT coskTt 0 . 0
0 0 coshkr  sinbkr
0 0 k sinhkT coshkr
. o = = = QR
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The Matrix Exponential of a Symplex is Symplectic

F7 =0 Fro
= MyM =~

Hamiltonian

Proof:
MyoM™ = exp(F7)y0(exp(F7))"
Tk -k
= exp(F71)0 (Z (F )

k —k
— ep(Fr)n (3 o5
— exp(F)0 (1+70|1=70+70F702!70F'yo+”.)

2 3
= exp(F7) (1—%4—%—%4—...)70
= exp(F7)exp(=F7)7

CIRY- = =, = 9ac
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Psl  Eigenvalues |

The Courant Snyder theory is about stable systems. = The
eigenvalues of transfer matrices representing “strongly” stable
systems are complex conjugate pairs on the unit circle in the
complex plane [1]:

Eigensystems

M(s) = EA(s)E™!
A = Diag(e'“1, e /w15 gfwzs gmiwzs)

This means that strongly stable systems can be represented by
. a constant force matrix F with purely imaginary eigenvalues:

F = EMNE!
A = Diag(iwy, —iwi,iwz, —iw)
where
A =exp(As)

(Easy proof.)

o = = = = 9ac
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Ps1  Eigenvalues Il (Matching)

A system with a one-turn (one-sector) transfer matrix M is
matched, if

Eigensystems

o(s) = Mo(O)MT

o = —MoypM iy
oy = MoypM!
S = MSM!
SM = MS
SEAE! = EAE!S
(E'SE)A = A(E!SE)
DA = AD
o 9 = =, = 9ac
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Eigenvalues Il (Matching)

D is diagonal, i.e.:

Eigensystems

Since only a diagonal matrix commutes with diagonal matrices,

D E-!SE
S —
A. Wolski [2]:

D = Diag(ie1, —ie1,ie2, —ie2).

°" = Find matched distribution o, for given emittances ¢; by the
determination of the matrix of eigenvectors E:

om=—EDE 1ng.

Or (equivalent) find transformation such that F and hence M
are block-diagonal. Then it is possible to apply 1-dim.
Courant-Snyder-Theory (CST).

[m]

=

S = z 9ac
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ESl

Algebraic
CST,: Real
Dirac Matrices

Why introducing Real Dirac Matrices in Classical Mechanics?

C.Baumgarten

@ The RDMs form a complete system of (“normalized”)
matrices. This is useful in the same way as orthogonal
coordinate systems are.

Real Dirac

'(\fqaéii/.c:f @ The RDMs are easy to handle, have zero trace (only the
unit matrix has a non-zero trace) and form a group.

© The RDMs have unique features: All RDMs are either
symplectic of antisymplectic, a symplex or an antisymplex,
either odd or even.

© Real because the 16 real matrices form a complete system.

@ Real because matrices F, M and S and all variables are
real.
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ESl

Algebrai . . . .
st resl The real Dirac matrices do only exist for “signature”

reelEes (44 4). We define o to be the symplectic unit matrix,
i.e. it is defined by the Hamilton EQOM:

C.Baumgarten

Hamiltonian

Eigensystems ’(/} = ’YO A w N

Real Dirac
Matrices

(RDMS) Then 3 more basic matrices v, k € [1,2, 3] are to be found with

Symplectic

Transforma Yo Yk + Yk Yo = O

tions

Electromechanical

Equivalence A possible choice for ¢ = (q1, p1, g2, p2) " is:

(EMEQ)

0o 1 0 o0 0 -1 0 o0

_ -1 0 0 0 _ -1 0 0 0

Yoo = o o o0 1 noo= 0 0 0 1

0 0 -1 0 0 0 1 0

0 0 0 1 -1 0 0 o0

B 0 0 1 o0 B 0 1 0 O

" = 0 1 0 0 nBoo= 0 0 -1 0

1 0 0 0 0 0 0 1
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Psi RDM I

The remaining matrices are defined by

Vs = NVL273 s = 1
Real Dirac Y4 = 0 715 0 = 714771 = 7273
;\;Dt'r'f; o= Yo V2; 8 = 7477 =737
Y6 = Y0 7V3; Yo = 1YV ="172
Yo = Y14 Yo = Y1273
Y1 = Y14 M1 = Y0273
Y12 = Y14 72 = Y0 Y3N
73 = Y14 73 = Y0172

Note: 5 # 70717273 but instead v14 = 707172 73!

o = z = = 9ac
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Real Dirac
Matrices
(RDMs)

The RDMs (as used in Dirac equation) have an intrinsic
structure:

@ The four basic matrices 7. ..~y3 represent a 4-vector.

@ The six products of two basic matrices are called
“bi-vectors” 4 ...79.

@ The four products of 3 basic matrices are a
“pseudo-4-vector" vip...713-

@ The product of all four basic matrices is the pseudo-scalar:
Y14 = Y0 Y172 73-

@ The unit matrix 715 is a scalar.

This structure refers to the transformation properties in
Minkowski space and allows a certain grouping of the RDMs
(see for instance Messiah, Quantum Mechanics II).
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Psi RDM IV

Vx EM. [ 72 | 4] [s/a|S/A] % | e/o

70 E | -1| — s S y e

ol P +1 | + s A n | (eo,e)

Yoy E | +1 s A | n | (eoe)
Real Dirac 14707 B -1 - S S y | (o,e,0)
P Y1470 -1 — a A y o
(RDMs) KA

Y145 +1| + | a S n | (oe,0)

Y14 -1| - a A y o

Y15 =1 +1 | + a S n e

al

“s/a" symplex or antisymplex.
“S/A" symplectic or antisymplectic.
“e/0" even or odd.

Fo A basis exists (y) or not (n) in which ~, is the “time
direction”.

o = = = = 9ac
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ESl

Algebraic
CST,: Real
Dirac Matrices

Any real 4 x 4-matrix M can be written as a linear combination
C.Baumgarten
of RDMs:

15
Hamiltonian
M = E my Y -
k=0

Eigensystems

Real Dirac
Matrices

(RDMs) The RDM-coefficients my can be computed by

Symplectic
mi = sign(74) Tr(M e + 7 M)/8
Electromechanical

Equivalence where sign(vx) is the signature of y, i.e.:
(EM

sign(vk) = Tr(7;)/4 = +1.

Note: Antisymmetric RDMs (79,77 - . .79, Y10 and 714) have a
negative signature, symmetric RDMs a positive.

17 /35



ESl

Algebraic
CST,: Real

o o A symplex F in CST, fulfills FT =~ F .
.Baumgarten

@ The product of two anticommuting symplices is a symplex.
Hamiltonian

@ (CS5T5: The basic matrices g, 71, 72 and ~y3 are
anticommuting symplices.

Eigensystems

Real Dirac

\EYdd] . . .

(RDMz). = All products of two basic matrices are symplices: 74 .. .79.
Symplectic 1 H .

2 S @ Six s.uch products exists (74 . ..79) plus four basic

Hons matrices.

Elect echanical . .

oo = v =10 parameters of the 2-dim. force matrix are found.
(EMEQ)

The force matrix F can then be written as:

9
F=) fin.
k=0

4
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Symplectic
Transforma-
tions

A linear coordinate transformation represented by a matrix R is
called symplectic, if R79 RT = 4o holds. In this case, the
Hamiltonian is invariant and:

H = H
Y = Ry
(¥7) = ¢TRT =—¢pT 4R 1
(T %) = ¢¥TyR?
F = RFR!
M = RMR™!
S = RSR!

The RDM's and the Hamilton equations of motion have the
same form in all coordinate systems. The transfer matrix M is
a symplectic transformation matrix. (i.e. the Hamiltonian
matrix F is the generator of a symplectic transformation).

19/35



ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian
Eigensystems

Real Dirac
Matrices
(RDMs)

Symplectic
Transforma-
tions

Electromechanical
Equivalence

(EMEQ)

Symplectic transformations are given by (products of)
matrix-exponentials of symplices. There are ten basic
symplices, i.e. v, with k € [0 — 9]:

9
FIZ fk"yk.
k=0

Hence we have ten possible symplectic transformations
controlled by a (dimensionless) parameter e:

R(c) = exp(mke/2)
R.(e) = exp(-—e/2) = Ri(—e)
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ESl

C‘;‘%f”;‘;l Consider we transform a matrix
Pirac Matices: X = £ 9 + Pxy1 + P, 72 + P73 using Ry, then we obtain
CBaumearten  Hfter decomposition into the RDM-coefficients:

Hamiltonian

Eigensystems X/ = R X R_l
! !/ / / /
Real Dirac X - g FYO+PX71+P}/’Y2+PZ,‘Y3
Matrices ! _ .
(RDMs) E" = & cosh(g) + Py sinh(g)
/ .
Symplectic PX == PX Cosh (5) + 6 Slnh (5)
Transforma- / o
tions Py - Py
Electromechanical P; = PZ
Equivalence
(EMEQ)

Using the usual parametrization in Minkowski space where ¢ is
the “rapidity” (8 = tanh (&), v = cosh (¢), By = sinh (g)), we
find

E = ~E4 By Py

P, = yPctpBvE

which is evidently identical to a Lorentz boost along x.
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PsI Symplectic Trafos and Minkowski Space |l

Same transformation, but
X =Exva+ Eyvs + Ezv6 + Bxv7 + By vs + Bz 7e:

X' = RXR™!
E>/< = Ex
Symplectic B)I( = BX
E, = Ey cosh(e) + B, sinh(¢)

E. E, cosh (g) — B, sinh (¢)
B, B, cosh (¢) — E; sinh (¢)
B, = B, cosh(g)+ E, sinh(¢)

which is again identical to a Lorentz boost along x, but now of
the e.m. fields.

o = = = = 9ac
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian
Eigensystems

Real Dirac
Matrices

(RDMs)

Symplectic
Transforma-
tions

Electromechanical
Equivalence

(EMEQ)

Lorentz transformations in Minkowski space-time are

isomorphic to (a subset of) symplectic transformations in

two dimensions.
Assume we associate the RDM-coefficients of

@ 7 with time-component of a 4-vector (i.e. energy &)

@ 7 with the space-components of a 4-vector (i.e.
momentum P)

@ 74, 5 and g with the electric field components E

—

@ 77, vg and g with the magnetic field components B

then we obtain a physically meaningful and transparent

notation of the components of the force matrix and survey of

symplectic transformations. | call this isomorphism
electromechanical equivalence.
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian The symplectic transformations generated by the ten RDMs
Eigensystems Y0 ..-79 are

D @ vo: phase rotation.

(RDMs) .

- @ 7 (71, 72 and 73): phase boost along x, y, z.
o ® 7, 75 and ve: Lorentz boost along x, y, z.

Electromechanical [*] Y7, V8 and Yo: Spat|a| rOtation abOUt a|0ng X, Yy, Z.

Equivalence

(EMEQ) Rotations and Lorentz boosts are supposed to be well known.
What do “phase rotations” and “phase boosts”?
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

The “phase rotation” Rg gives & = & and B’ = B, but:

Hamiltonian

Eigensystems P/ — cose P _ Sin c E

Real Dirac =4 = . =

s E' = coscE +singP

(RDMs)

Syl The “phase boosts” Ry k € [1 — 3] are like Lorentz boosts, but
.ransforma— . LN e ; )

tions with E and P exchanged. Hence they are identical to a
.. sequence of 90° phase rotation + Lorentz boost + 90° inverse
(EMEQ)

) phase rotation.
Lorentz boosts: E B and E2 — B2 are invariant. Phase boosts:
P B and P? — B2 are invariant.
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ESl

Algebraic

CSTy: Real Envelope equation (from above):
Dirac Matrices
C.Baumgarten .
$=FS—SF,
Hamiltonian
Eigensystems The Lorentz force equation then writes (using proper time 7):
Real Dirac
Manice; d P .
(RDMs) =P = q (F P—P F) ,
Symplectic dT 2 m
Transfornw—
o In the lab frame time dt = ~ d7 this write as (setting ¢ = 1):
Electromechanical
tqlut\ulcncc -
(EMEQ) dé _ q9qBE P _ g Fi P B
¢ _ 4pE £ — 2 (¢E+PxB)
7% = qnVE v = 2 m7E+m'yv><B)
at = qVv E dar = q (E + v X > s

which are exactly the Lorentz force equations.
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian
Eigensystems

Real Dirac
Matrices

(RDMs)

Symplectic
Transforma-
tions

Electromechanical
Equivalence

(EMEQ)

If one writes the 4-potential ® (4-current J, 4-momentum P)
as a 4-vector using the RDMs ~g ... y3 according to

=0 +AMn+tA N2+A =07 +7A,
the 4-derivative D as
D=0:v%— 0y —0yv2—0:73,
and the electromagnetic fields E and B as
F=Evs+E s+ E;v6+ Bcyr + By + B9,

then the Maxwell equations can be written (remarkably
compact) as:
F = -Do
DF = 4nJ,
with the usual choice of units.
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian
Eigensystems

Real Dirac
Matrices
(RDMs)

Symplectic
Transforma-
tions

Electromechanical
Equivalence

(EMEQ)

The effect of a basic symplex vy is given by:

R, = exp(ype/2)
R, — | lcos(e/2)+psin(e/2)  for 72 =-1
b~ 1 cosh (£/2) + 7 sinh (¢/2) for vz =1
R,. = exp(—b=/2)
B 1 cos(e/2) —vpsin(e/2)  for ~2=-1
1 cosh (g/2) — vp sinh (/2) for ~2=1
Transformations with 712) = —1 are orthogonal transformations,

i.e. rotations about angle €, while those with 'yg =1 are boosts
with “rapidity” e.
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Hamiltonian
Eigensystems

Real Dirac
Matrices
(RDMs)

Symplectic
Transforma-
tions

Electromechanical
Equivalence

(EMEQ)

Hence the transformed matrices are

7‘/3 = R7R
= R’YaRil
= (c—sv)valc+sv)
= 9= Va1 S? + 5 (Vavb — Vb Va) 5

where ¢ and s are (hyperbolic) sine- and cosine-functions.
The last term of the right vanishes if v, and v, commute, so
that

/

Vo= (=%
_ cos? () +sin?(e) =1 for ~2=-1
= 7] cosh?(g) —sinh?(e) =1 for A2 =1

(Unity transformation.)
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ESl

Algebraic
CST,: Real
Dirac Matrices
C.Baumgarten

If v and 7y, anticommute, one finds:

Yy = va(2+Es%)+2csvam
[ vacos(2e) +7avp sin(2e)  for A2 =-1
N Ya cosh (2€) + 7,7 sinh (2e) for 72 =
Symplectic
Transforma-
tions Note: This treatment of Lorentz transformations and

spatial rotations of the classical state vector

Y = (q1, p1, G2, p2) " is identical to the transformation
formalism and properties of the Dirac spinor ¢(x, t) in
QED!
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ESl

Algebraic

o2 Bl - The most general force matrix F of a symplectic process can be
Coampres | Written setting formally 5 = (71, 72,73) " according to the
EMEQ as:

Hamiltonian o o N
Eigensystems F = g Yo + P ,-7 + E Yo :); + B Y14 70 ,-7
Real .I—)wac 7EX EZ + By Ey - BZ BX
2\/%1[;’?/‘26)5 _ Ez — By EX *BX *Ey - Bz
Symplectic Ey + BZ BX EX EZ - By
Tmnsform:—] _BX —Ey + BZ EZ + B}/ _EX
R P, £-P, 0 P,
B ~E-P. P P, 0
(EVEQ) * 0 P, P, E+P

P, 0 -E+P, P,

Bringing F to block-diagonal form then means to find a
symplectic transformation R with F/ = RFR™! such that
E,=B,=B,=P,=0.
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PS5l Electromechanical Equivalence Il

K1
K>

w1
w2
Electromechanid Det(F)

Equivalence

(EMEQ)

The eigenvalues of the force matrix F are

Diag(iwi, —iw1,iwa, —iw>)

&2 + §2 _ E—z _ ,32

2EP(Ex B)+ 8B+ B2
(EP)> — (EB)* — (PB)?

VK +2VK,

Ki —2VKa
K? — 4 K,

System stable = eigenfrequencies are real:

u]
o)
1
n
it

Do
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Electromechanical Equivalence IV
“Fields”" being zero:

Ki = E2—-P2=m?
K = 0
w1 = wz—\/Klzm
K2 _ A
Det(F) = Ki=m
“Energy + momentum" being zero:
A =
Electr hanig
e Ki
(EMEQ)

Diag(iw1, —i w1, fwa, —iwn)
£§2 _ 5?2
K> —(EB)?

for EB = 0l1):

w1 =

System stable = eigenfrequencies must be real (only possible

wy =K = VB2 - E?
[m] = =

= =z 9ac
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ESl

Algebraic
CST,: Real
Dirac Matrices

C.Baumgarten

Electromechanid

Equivalence
(EMEQ)

Algebraic extension of 1-dim. Courant-Snyder theory
(CST) with Real Pauli Matrices (RPMs) is 2-dim. CST
with Real Dirac Matrices (RDMs).

The Ansatz using RDMs allow for a complete, final and
comprehensive generalization as RDMs form a complete
basis of all real 4 x 4-matrices.

Based on the RDMs, a survey of symplectic
transformations was given.

The electromechanical equivalence (EMEQ) allows to use
a familiar and meaningful nomenclature.

A close and remarkable isomorphism of 2-dim. classical
state vector and the Dirac spinor has been presented.
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