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Introduction

Space charge dominated beam transport in cyclotrons
yields “weird coupling”.

Computation of emittances and beam sizes requires
decoupling.

Teng/Edwards [1, 2] method does not work here.

Extension of Teng/Edwards method presented at talk Dec.
2010.

But: The extension was numerically “difficult” (a lot of
“if-then-else” -statements required).

No other publication found with a general, simple and
working method.

N
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Outline

Introduction

This is a sequence of 3 talks:

@ 1-Dim. Algebraic Courant-Snyder Theory (CST;): Real
Pauli Matrices.

@ Algebraic CST,: Real Dirac Matrices.

@ Symplectic Decoupling in n Dimensions (CST,).
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Introduction

e &€ © 6 © © 6 ¢ o ¢

Time dependent harmonical oscillator (Hill's equation).
Symplectic unit matrix and Hamilton equations of motion.
Introduction of the “symplex” (Hamiltonian matrix).
Symplectic condition for a linear transformation.
Courant-Snyder theory with real Pauli matrices (RPMs).
Transfer matrix + Floquet theoreme.
Eigenvectors/Eigenvalues.

Second moments (o-matrix).

Matching and Emittances.

Symplectic transformations and “decoupling”.



Ps1 CSTy: Hill's Equation

Hill's Equation (time dependent harmonical oscialltor):

x"(s) = —k(s) x(s).

Harmonical

Ssclatoy Rewrite as linear differential equation:
a(s) = x(s)
p(s) = X(s)
q(s) = p(s)
pls) = —k(s)x(s)

Orwith¢:<Z):

CIRY- = =, = 9ac
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Psl  CST;: Hamiltonian of Harmonical Oscillator

Hamilton function with symmetric matrix A:

— B8 42
Harmonical H o ( q +apq+ )
Oscillator
T
-:(5) (25)(5)
2\p a 3 P
= 1T A,
Equations of Motion (EQOM):
g = Gr=wlag+pBp)
p = —F=-w(g+ap)
[m] = = =
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CST;: EQOM and Force Matrix

Introduce symplectic unit matrix 7g:

pe—r 0 1
Ouciator Mo = ( 10 ) :

= EQOM:
o a p _ 0 1 v o«
bee (5 L) (B (05)
= mAY
= F¢

with force matrix F and Twiss-parameters «, (5 and ~.

CIRY- = =, = 9ac
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PsI  CST;: Algebra |

Properties of Hamilton matrix A:

Harmonical

Oscillator @ A is symmetric.

@ A has dimension n x n and is twice the degrees of freedom
Nf: n=2 Nf

@ = Number of parameters v is v = @
@ In 1-dim systems (Nf = 1): v = 3.
@ In 2-dim systems (Nf = 2): v = 10.

Note: The same number of parameters is necessary to describe
a o-matrix for N¢ degrees of freedom.

o = = = = 9ac
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ESl

C=lnezsmy Properties of the force matrix F = ng A:
C.Baumgarten @ FT7 =g Fo (Often called “Hamiltonian matrix" or
Introduction “infinitesimal symplectic”. | prefer “symplex”).

F is product of symmetric and antisymmetric matrix:
= Tr(F) = 0.

= Sum of eigenvalues is zero.

Harmonical
Oscillator

Algebra of
Real Pauli
Matrices

(]

Periodic
Motion

Superposition/Linearity: If F1 and F, are symplices, then
F = a1 F; + ax Fy is a symplex.

Multiplication Theorem: If F; and F, are force matrices,
then F = F; F; is a force matrix, if (and only if) Fy and

Eigenvalues
and
Eigenvectors

Envelopes and

ﬁfgfﬂm F> anticommute. Proof:
o s (FiF2)T = FJF[ =noFamomnoFim
o = —noF2Fimo =m0 (F1F2)mo
Summary = _F2 Fl — Fl F2

= FFi+FiF,=0



ESl

CS-Theor . . .
’ Given a (constant) linear transformation R of the state vector

1) = R, the transformation is canonical, if the Hamiltonian
Introduction and the EQOM preserve their form (relativity principle):

Harmonical
Oscillator

C.Baumgarten

Algebra of ¢ ?0 V,L/j H
Matrices Ry = FRv¢
Periodic d] — R_l ? R w
Motion N "E _ R F R*l

Eigenvalues
and
Eigenvectors

Preservation of form: F is symplex, hence F must be symplex:

Envelopes and
Second

Moments (RFRH)T = (R Y)TyFnRT

Symplctic = noRFR 1y

EH (R = mR mRT = R
Summary m = RTmpR RnoRT = o

i.e. R must be symplectic.
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PS5l CSTi: Real Pauli Matrices (RPM)

All real 2 x 2 matrices can be written as a sum of the real
Pauli matrices (RPM) o, n1, 72 = nom1 and 3 = 1:

_ 0 1 (01

Algebra of o = -1 0 o= 1 0
Real Pauli

Matrices o 1 0 _ 1 0

”= o 41 B= o1

Note the following anticommutation relations:

mom+mmn = 0
mm+mm = 0
none+mn = 0.
The squares are: n? =73 = —n3 = 1.
o = = = = 9Hae
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CST:: RPM I

Algebra of
Real Pauli
Matrices

Any real-valued 2 x 2 matrix M can be written as

3
M:Z my Nk ,
k=0

where the RPM-coefficients my are given by the “scalar
product”:

myc = sign(ni) Tr(Mny + ne M) /4.
The signature sign(nx) of a RPM is given by

sign(ne) = Tr(ng)/2.
Note: The antisymmetric RPM 19 has a negative signature, the
symmetric RPMs a positive.
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CSTi: RPM I

Recall a matrix F that fulfills
Algebra of

Real Pauli
Matrices

F' =noFmo

Superposition principle = general F:

:>F=w<ﬂ;” B—n

o +
Note the square of F:

F2/w? = (a®-p7)1
= F2 =021
for normalization 3y — a? = 1.

is a symplex. The basis matrices 79, 171 and 7, are symplices.

5 n1+a172) .

Do
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pPsl  CST;: Transfer Matrix

The time evolution is a canonical (i.e. symplectic)
transformation. = the solution ¢(s) can be written as

¥(s) = M(s)¥(0)
Algebra of () M(s) ©(0)

Real Pauli M M1 M’(ﬁ(O)

Matrices

MM~ g(s)
= Fy(s)

with a symplectic “transfer matrix" M, so that:

F = MM!
M = FM

Compare to ¢ = F¢) = The columns of M are solutions of the
EQOM.

o = = = = 9ac
14 /38
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Periodic
Motion

EQOM:

Y =Fq.

Floquet-Theorem: If F is periodic F(s + L) = F(s), then the
transfer matrix M can be written in the form:

M(s) = K(s) exp (F s).
where K(s) is symplectic and periodic.

M(0) = 1 = K(0) =

1
Ks+L) = K(s) = K(L) = 1

Transfer matrix of one period of length L:

M(L) =M, = K(L) exp(FL)
= eXp(FL),

15/38
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CST;i: Floquet Theorem Il

Consider a constant force matrix. EQOM:

v =F.
Solution:

Periodic
Motion

W(s) = exp (F 5)4(0).

= F is the “average” force matrix [5]:

F=>In(M

L n( L)7
and the logarithm of the symplectic one-turn-transfer matrix
M;.

Do
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CST:: Floquet Theorem llI

W(s) = K(s) exp(Fs)(0)
K-1(s)y(s) =

exp (F 5) K(0) K(0)(0)

Since K is symplectic, the transformation

Bs) = Kl s)uls)
s ¥(s) = exp(Fs)K(0)v(0)
is canonical. For a given fixed reference position sy we have
K(sp) =1. Let sp = 0:
3/;(5) = exp(Fs)(0)
M(s) =

exp (F s)

The beam optics of a linear periodic system can be equivalently
described by a system with constant F.

o F

Do
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Psl  CSTi: Periodic Motion |

From
M(_s) = exp(Fs)
F2 —w?1
it follows that
— oo Fs)k
pii M(s) = ep(Fs)= 3 B
X (F )@k X (Fs)@k+1)
= kZO % + 20 ((2sk)+1)l

ws)@K) w s)(2k+1)
— 2( L= 4 Fw 2( AR

= 1cos(ws)+sin(ws)F/w

o < z =, = 9ac
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CST;: Periodic Motion Il

From

—Q
Motion

— 1% ﬂ
F/w= .
/ < - )
one finds:
Periodic

with

M(s) = 1 cos (ws) + sin (ws) ( - fa ) .

M"(s) =1 cos(Nws) +sin(Nws) ( _a _ﬁa ) .

Do
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CST;: Eigensystems la

Eigenvalues
and

Eigenvectors

@ The force matrix F is a product of the antisymmetric
matrix g and the symmetric matrix A.

= The trace of F is zero.

= The sum of the eigenvalues is zero.

@ Stable systems have only imaginary eigenvalues [4].
= The eigenvalues are a pair (iw, —iw).

Do
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Psl CSTy: Eigensystems |Ib

Eigensystem of force matrix:

F = EMNE!

En — E\" E—l

= f(F)=Ef(\)E?
= exp(Fs) =Ee*SE~!

= transfer matrix:

Eigenvalues

and M(s) — E eXp ()\ S) E—l

Eigenvectors

= EAE™!

with

= Diag(—iw,iw)=—iwn
exp (As) = Diag(e™'¥*, e'¥?)
= 1 cos(ws)—insin(ws)

> >
I

m} = =

Do
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Ps1  CSTi: Eigensystems Il

It follows that:

F

M(s)

ENE!

—iwEn E7!

EAE!

1 cos(ws)—iEnE~!sin(ws)

= — where E is given by (with 37 — a? = 1)

and
Eigenvectors

(i—a —i+a)
Y Y

—iv 1—-i«
2y iv l14+ia )

ol o

Do
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Ps1 CST;: Eigensystems Il

If u; and uy are the eigenvectors (columns of E) of the force
matrix, then:
[Ii: Fu,-:iiwu,-,

and hence: _
ui(s) = et 9% 1 (0).

Furthermore one finds with the definition T; = u;r 7o:

hhuy = —i Upup = |

Eigenvalues _ -
and ug up = 0 uz tn = 0

Eigenvectors

(Orthogonality equations)

1 = i(u1 U — up L_lz)
F = w (U1 U1+ un l_lz)
Fuu = —iwuw
Fuyu = iwuw

o = = = = 9ac
23/38
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What is the advantage of the eigensystem?

Eigenvalues
and
Eigenvectors

e & © ¢

The eigensystem is an especially simple way to express the
same physical situation.

The EQOM are then eigenvalue-equations.
The transformation into the eigensystem is not symplectic.
= The equations of motion are modified.

The use of eigensystems is paid by the use of complex
numbers.

Knowledge of eigenvectors allows to compute matched
beam ellipsoid (below).

24 /38



Ps1  CST;: Second Moments

Definition of matrix of second moments:

o= (pyT).
Time evolution:

¢ = (pyT)+(ypyT)

= (FyoT)+ (vyTFT)
Fo+oFT
Fo+ongFno
Fano+anan(2)

ano

Envelopes and

Second - F (U 770) - (0 170) F

Moments

Define matrix S = o1 = (7 19) = (1)) with

$=FS-SF.

Do
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Introduction

Harmonical
Oscillator

Algebra of
Real Pauli
Matrices

Periodic
Motion

Eigenvalues
and
Eigenvectors

Envelopes and
Second
Moments

Symplectic
Transforma-

tions

Summary

The S-matrix is a constant of motion, if

w:
\

FS—SF=0
ENE!S—SEMNE!
AMEISE—E1SE\
— AD-D)\.

o
Il

Since only diagonal matrices commute with diagonal matrices,
D must be diagonal, so that the force matrix and the S-matrix
share the same eigenvectors:

S—EDE!.

Generally: Commuting matrices share the same system of
eigenvectors.

26 /38



Ps1 CSTi: Matching

A beam is matched, if the o-matrix is unchanged after one
turn. If M is one-turn transfer matrix, then

o = MoMT
gy = MUMT’I’]O
S = —MSnoMTno

M is symplectic, i.e.:

MTeM = 1

—MTn = M1,
Envelopes and
oo so that
Vioments s — M s M—l
SM = MS

0 = SM-MS

Matching = M and S share the same system of
eigenvectors [6].

[m] = -

Do
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CS-Theory

Ceaumgaten | he relevant matrices in stable (focusing) systems:

Intwudun.uom F _ E )\ E—l — E Diag(iw’ _Iw) E—l
o M = EAE!=EDing(el*%,e /%) E "
Algebra of S = EDE"!=EDiag(—ie,ic)E™}

Real Pauli

Matrices

S Eigenvalues of S = o 1g are 4 emittance ¢ [6].
Heren Possible method to obtain matched beam ellipsoid from the
S one-turn (one-sector) transfer matrix M or the force matrix F:

and
Eigenvectors

o Compute matrix of eigenvectors E.

Envelopes and

S d _ -1

eon @ Compose S=EDE™".

Symplecic @ Obtain beam sizes by 0 = S1g = —~EDE 1.

Hons @ But: Decoupling transformations must be symplectic
Summary

(emittance preservation)!
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But according to F. Hinterberger [7] the matched beam
ellipsoid is given by:

(5 ).
o~

So why to compute eigenvectors at all?

C.Baumgarten

@ 1-dim.: Eigenvectors not required to obtain matched
beam.

@ 2-dim.: Eigenvectors not required: decoupling to
St block-diagonal form sufficient.

Moments

@ n-dim.: lterative decoupling to block-diagonal form
sufficient.

@ Block-diagonal form = use 1-Dim. Courant Snyder
Theory.

29 /38
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Introduction

Harmonical
Oscillator

Algebra of
Real Pauli
Matrices

Periodic
Motion

Eigenvalues
and
Eigenvectors

Envelopes and
Second
Moments

Symplectic
Transforma-

tions

Summary

Symplectic transfer matrix M = exp (F s) is exponential of
symplex F.
Any exponential of a symplex F =19 FT 19 is symplectic:

) ) Tk
MUOMT = <Z I;T) Tlo <Z (Fk!)>

k=0 k=0
- (E Ry (Frata)
- (55) (55 )
= exp(F) exp(—F)no
= "o

There are 3 basic symplices in 1-dim. systems: 79, 11, 172 and
hence 3 independent symplectic transformations.

30/38



Psi CSTi: Symplectic Transformations |l

The exponentials of the basic matrices are:
Ro = exp(noeo/2) = cos(g0/2) 1+ sin(e0/2) no
Ri = exp(nie1/2) = cosh(e1/2) 1+ sinh(e1/2)m

R>

exp (n2€2/2) = cosh (¢2/2) 1 + sinh (e2/2) 2
Rp is a “phase rotation”, i.e. a rotation in phase space:

RomoRyt = 1o
Symplectic RO nl Ro_l = cos (60) 771 + Sln (60) 772

Transforma-

o = = = = 9ac
31/38
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Algebra of
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Motion

Eigenvalues
and
Eigenvectors

Envelopes and
Second
Moments

Symplectic
Transforma-

tions

Summary

R; and R; are called “phase boosts” due to their formal
similarity with Lorentz boosts.
The phase boosts with 7;:

R1 70 Rl_l = cosh (61)770 — sinh (81)772
RimR! = m
Rim Ry = cosh(e1)n2 —sinh (1) Mo

The phase boosts with 7,:

RamoR,Y = cosh(e2)no + sinh (e2) m
Ry Ry* cosh (e2) 1 + sinh (€2) 1o
Rom Ryt =

32/38



Psi CST;i: “Decoupling”-Transformation

The symplectic transformations can be used (also in

combination) to bring F to the normal form. For instance, if we
chose

ey 0
U = exp(xno—xm+ym)= ( —2X ¢iph (y) e )
X = alog(\/ﬁ) ’

y = log(\/_)

then the calculation yields [3]:

U =

Symplectic
Transforma-
tions

1
i
1 1
U™ = 7

u]
o)
1
n
it

Do
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Psi  CSTi: "Decoupling”-Transformation |l

The transformation results in:

F = UFUl=wU ( @ B > Ul=wn
i'; = Mo A
= A=uwl
o= 49T
= 5(@+p)
Symplectic
TV‘EIHS{OV‘HKI*
e The transformation is the so-called

“Floquet-Transformation” [7]. It transforms the Hamiltonian to
what we call “normal form”.

o = = = = 9ac
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Summary

Note that the Floquet-Transformation is only determined up to

an orthogonal symplectic transformation V:
F = UFU_lsz< « B )U—lzwno
— —a

F = VUFU IV I=uVypVT =wip

The only orthogonal symplectic transformation (in 1-dim.

systems) is the phase rotation:

V =exp (0 ¢) .

Hence the Floquet-Transformation has the general form

U=-exp(no¢) exp(xmo—xm+ymn).

35/38
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CS-Theory
Linearized system with Ny degrees of freedom.

C.Baumgarten

Linear equations of motion for 2 N¢ variables.
Use Floquet theory to get rid of time dependence.

e & © ¢

Hamiltonian with symmetric 2 Nf x 2 N¢-matrix, i.e.
_ 2Np(2Ne+1)
v = ——5-"—" independent components.

= v linear independent basic “symplices*.
= v second moments including all correlations.

= v symplectic transformations.

e © ¢ ¢

Nf =1 yields v = 3: Usual Courant-Snyder theory,
relatively simple. Not really worth the formalism.

o Nr =2 yields v = 10: Generalized Courant-Snyder theory
with real Dirac matrices. Not trivial. Next talk.

@ N > 2: Use "Jacobi” method for decoupling: Talk in 2

weeks.
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PSSl CST;: Summary (cont.)

@ (STy can algebraically be expressed by the real Pauli
matrices.

@ The eigensystems of the (periodic) transfer matrix M, the

(average) force matrix F and of the S = o ng-matrix are
identical.

@ The Floquet-transformation is symplectic (hence
canonical).

Thank you for your attention.

Summary

o = = = = 9ac
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Summary
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