Magnetic Sector Bend Results

Norman Huang
November 17, 2011
TRIUMF

Configuration 1

- Using a 90 degree magnetic sector bend towards negative X, particle is a proton
- Fringe field is off, by setting the $1^{\text {st }}$ order Enge coefficient to be 1e10
- Input line:

AND1:SBEND, L=2.855796, ELEMEDGE=1.0, ALPHA=0.0, K0=2.0, FMAPFN='FAND1.T7', DESIGNENERGY=500.0, EXITANGLE=0.0;

- Our bender starts at 1.0m along the track, and has an arc length of 2.855796 m

Single Particle Tracking in X

- X vs. Z in the local reference frame, where Z is always in the direction of the reference particle
- The plot describes a single off-axis particle as it travels through the SBEND
- As expected, it's X value reaches 0 at the end of the element
- In OPAL, this information (x, y, z) is captured in the vector called R

Single Particle Tracking in X

- X vs. Z in the local lab frame, relative to the current element (SBEND)
- This plot is of the same particle going through the SBEND, but in a different frame
- Notice that Z is relative to the Element Edge, so it starts at 0
- The plot actually extends outside the SBEND's exit, that might explain the extra curve at the end
- In OPAL, this information (x, y, z) is captured in the vector called X

Single Particle Tracking in Px

- Px vs. Z in reference particle frame
- Plot of the same particle's momentum in X as it travels through the SBEND
- Appears to be noise, as the values are actually very small
- Following phase plots should see Px close to 0 along the track

Phase Plot - Initial

Phase Plot - Start of Bend

Phase Plot - Middle of Bend

Phase Plot - After Bend

- Notice the change in scaling of X axis
- The distribution of Px stays 0 throughout, while X gets squished in

Configuration 2

- Using the same setting as Configuration 1, but this time Fringe Field is On
-0.0170
1.8055
-0.2819
0.5680
0.3817
0.0966 // Enge coefficients for Entrance Fringe, E0 to E5
-0.0170
1.8055
-0.2819
0.5680
0.3817
0.0966 // Enge coefficients for Exit Fringe, E0 to E5

Single Particle Tracking Results

- X vs. Z in reference frame looks identical
- X vs. Z in local lab frame looks identical
- Px vs. Z is different
- Phase Plots are very different

Single Particle Tracking in Px

- Observable effect on Px by the entrance fringe
- Nothing from the exit fringe (error in the input file?)

Phase Plot - Initial

Phase Plot - Start of Bend

Phase Plot - Middle of Bend

Phase Plot - After Bend

- Notice the shrinking of the X -axis scaling. It is consistent with what we saw in Configuration 1.
- Px is non-zero now, but in an asymmetric distribution
- Is this a non-physical behavior?

