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2 Motivation and Overview
OPAL is a code for multiparticle tracking in the context of intense beams in cylcotron and linac 
geometries. OPAL has two modes of running, so-called “OPAL-T” mode and “OPAL-CYCL” 
mode. OPAL-CYCL was the original development product of the OPAL group and mainly used to 
simulate the PSI cyclotron. OPAL-T was subsequently developed to support design and simulation 
of the X-FEL machine. Although the two codes share some common features, much of the code was 
redeveloped in a more organised way for OPAL-T. Subsquently, several interested persons have 
been investigating the potential for using OPAL-CYCL for multiparticle tracking in FFAG type 
geometries. 

The field map routine in OPAL-CYCL is a hard coded bilinear 2D field map interpolation followed 
by an RF cavity. OPAL-T uses a generalised field map abstraction, within which several options for 
interpolation have been implemented. 

The simulation of FFAGs can be performed using 2D or 3D field maps. Required that the 3D field 
maps for e.g. the ERIT ring should be implemented for tracking in OPAL.

MAUS is an existing code used for modelling Neutrino Factories and the Muon Ionisation Cooling 
Experiment. MAUS has a number of routines for field mapping, including an existing trilinear 
interpolator for 3d field maps.

3 Task

3.1 SectorMagneticFieldMap

The user should be able to add a new element SectorMagneticFieldMap that generates a sector 
magnet based on a read of a 3D field map and trilinear interpolation in each of (Bx, By, Bz). Sample 
input is

my_sector_magnet: SectorMagneticFieldMap, FMAPFN=”MyFieldMap.table”
where the bending angle, length and radius of curvature is determined from the field map file.
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3.2 Ring-type beamline

Currently, the user can define a linear/beamline-type geometry using a command like

my_beamline: line=(drift_1,bend_1,quad_f,bend_2,drift_1,quad_d)

where dr1, b1, QF, etc are previously defined elements (like quadrupoles, dipoles and drifts). 
Additionally the user can define a ring-type geometry using a command like

my_ring: Cyclotron, TYPE="RING", CYHARMON=6, PHIINIT=-0.1, PRINIT=-
0.0022, RINIT=2043.5, SYMMETRY=8.0, RFFREQ=frequency, 
FMAPFN="./s03av.nar";

An additional ability should be implemented to define a ring-type geometry in a manner drawing 
analogies from the beamline and Cyclotron declarations, e.g.

ring_def: ring_definition, CYHARMON=6, LATTICE_RINIT=2043.5, 
LATTICE_PHIINIT=30, LATTICETHETA_INIT=-30, PHIINIT=-0.1, PRINIT=-
0.0022, RINIT=2043.5, SYMMETRY=8.0, RFFREQ=frequency

my_ring: line=(ring_def, drift_1,bend_1,quad_f,bend_2,drift_1,quad_d)

which would define an 8-cell ring with the first element placed at LATTICE_PHIINIT, 
LATTICETHETA_INIT and LATTICE_RINIT. Initial beam angle, radius and radial momentum 
defined as PHIINIT, RINIT, PRINIT respectively as in the standard Cyclotron definition.

3.3 Field Map Output

As a cross-check of the field mapping routines, it is desirable to write a 3D field map for some set 
of input coordinates . Sample input should be something like:
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fm: 3d_field_map, START_PHI=0. END_PHI=90. START_R=1000., END_R=2000., 
START_Z=-100., END_Z=100., N_PHI=10, N_Z=10, N_R=10

Here the START_<> and END_<> indicate the start and end value of the map in each coordinate 
and the N_<> indicates the number of grid points in each dimension.

The output should be a standard format, say OPERA 3D format

<N_ROWS> <N_PHI> <N_R> <N_Z>
1 PHI [m]
2 R [m]
3 Z [m]
4 BPHI [T]
5 BR [T]
6 BZ [T]
0
<PHI> <R> <Z> <BPHI> <BR> <BZ>
... repeat for each row ...

where items in angle brackets represent data that should be filled in at run time.

4 Existing Opal Code
The structure of the existing code is described below.

4.1 OPAL-Cycl Field Map Implementation

The OPAL-Cycl field map routine is implemented in classic/5.0/src/AbsBeamline/Cylcotron.h,cpp.

Cyclotron.h contains a “BfieldData” struct holding field data and a “Cyclotron” class inheriting 
from “Component” that acts on the BfieldData.

The Cylcotron initialises by reading in a 2D field map. The file read is implemented for a number of 
different formats. Subsequently derivatives are calculated to 3rd order.

The routine takes a position in Cartesian coordinates and a time. The routine transforms to 
cylindrical coordinates; performs a bilinear interpolation to calculate a field in cylindrical 
coordinates (using the field and its first derivatives); transforms the field back to Cartesian 
coordinates; then adds contributions from several time varying Cartesian RF field maps. The routine 
returns true if the field contribution is 0 or false if the field contribution is non-zero. The RF field 
maps are instances of OPAL-T RF field maps (see below).

Accessors and mutators are also implemented.

4.2 OPAL-Cycl Call Structure

The field map routines are called by the tracking as implemented in 
src/Algorithms/ParallelCyclotronTracker.h,cpp. Two routines are implemented, 
ParallelCyclotronTracker::Tracker_RK4() and ParallelCyclotronTracker::Tracker_MTS(), each of 
which uses the “external” field to do numerical integration – 4th order Runge Kutta and 2nd order 
leap frog respectively. The field maps are contained in an STL list “FieldDimensions” of string 
component type, double[8] (that doesn't seem to be used, probably a bounding box) and 
Component* that are associated through nested STL pairs. Only the first Component of the 
beamline_list is consulted for field data. The rest are assumed to be IO components or equivalent.

4.3 OPAL-Cycl Setup and User Interface

The user interface for the OPAL-Cycl is implemented in src/Elements/OpalCyclotron.h,cpp which 
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inherits from the general UI class OpalElement. OpalCyclotron makes a CyclotronRep which is a 
type of Cyclotron (defined in classic/5.0/src/BeamlineCore/CyclotronRep.h,cpp).

Element definitions are registered through the OpalElement class implemented in 
src/Elements/OpalElement.h,cpp. Each attribute in the element is added to the static std::map < 
std::string, OwnPtr<AttCell> > OpalElement::attributeRegistry where the first item is the element 
name as defined in the input file, the second item is a smart pointer to a generic attCell, defined in 
src/Elements/AttCell.h,cpp. This is a base class for a typed string-value pairing.

OpalElement inherits from Element, defined in src/AbstractObjects/Element.h,cpp.

Elements are added into the FieldDimensions list by visit functions in the ParallelCyclotronTracker. 
ParallelCyclotronTracker holds a number of visit<object> functions e.g. visitCyclotron, each of 
which is called by an accept function within the object. The accept functions are called in turn by 
the TBeamline defined in classic/5.0/src/TBeamline.h,cpp, which is a collection of pointers to 
Elements (ElmPtr) generated by the input file parser.

4.4 OPAL-T Field Map Abstraction

The OPAL-T field map routines are implemented in classic/5.0/src/Fields. The Fieldmap class 
provides a pure abstract interface class with a number of routines that return field value and 
bounding box data appropriate for a Cartesian coordinate system, as well as templated routines to 
read files that contain field map data. RF field maps and various 1D and 2D magnetostatic field 
maps have been implemented. 

Once read, the field maps are treated independently by different element types. For example, a 
solenoid will make a field expansion from a 1D field map based on a polynomial expansion of Bz 
and its derivatives.

4.5 OPAL-T  Call Structure

Individual elements are loaded in the same way as in OPAL-Cycl. The ParallelTTracker is used for 
tracking, defined at src/Algorithms/ParallelTTracker.h,cpp. A different set of fields are permitted by 
defining a different set of visit functions on the tracker. Visit functions add elements to an 
OpalBeamline object defined at src/Elements/OpalBeamline.h,cpp. The OpalBeamline holds a 
method like

unsigned long getFieldAt(const Vector_t &pos, 
                         const Vector_t &centroid, const double &t, 
                         Vector_t &E, Vector_t &B);

that finds the element at a given position, performs coordinate transformations to transform into the 
local coordinate system of the element and sets the field to the field of that element. getFieldAt 
returns a value corresponding to different field conditions (has wakefield, has geometry, ...)

5 Existing MAUS Code
MAUS has a reasonably elaborate scheme for meshing, interpolation and field mapping. This 
improves code reusability; for example, some interpolation routines are shared between solenoid 
field maps interpolating from a 2d field map to produce a 3-vector, multipole field maps 
interpolating from a 3d field map to produce a 3-vector and electromagnetic field maps 
interpolating from a 3d field map to produce a 6-vector. The cost is a small performance 
impediment in the inner loop of particle tracking (several vtable lookups and pointer dereferences) 
and arguably an increase in code complexity.
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MAUS underwent a rebranding exercise from its previous incarnation as G4MICE 2 years ago. 
New code is now required to obey certain style requirements, test coverage requirements and 
comment coverage. Routines are found either in the “legacy” area, indicating that they have not met 
the requirements for commenting, testing and style; or in the “common_cpp” area, indicating that 
they have met these requirements.

All non-legacy MAUS code is tested in “unit tests”. Unit tests check the code in each class using 
specific hard-coded C code. The gtest library (Google test) is used to provide testing framework like 
comparators, test runners, etc. An additional level of application-level tests is implemented 
checking the integration of routines into the overall framework. Application and legacy test 
coverage is generally quite poor.

All non-legacy code is documented using doxygen-style comments. Typically a comment is 
provided for every function, even if only to indicate that the function performs the “obvious” action 
(like accessors or mutators).

5.1 Meshing Routines

MAUS has a number of meshing routines defined in src/legacy/Interface/Mesh.hh,cc. These 
routines describe regular rectangular and irregular triangular 1D, 2D and 3D grids. Iterators are 
supplied to iterate over all grid points. For this case, the relevant mesh is a regular 3D rectangular 
grid, ThreeDGrid. Routines are provided to convert between 3D index, 1D index, iterators and 3D 
positions within the grid. Meshes know nothing about the field value at each point in the mesh.

5.2 Interpolation Routines

MAUS has a number of interpolation routines describing interpolation off of meshes for various 
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different spacial dimensions, defined in src/legacy/Interface/Interpolator.hh,cc. Here we describe 
the 3d interpolation routines.

• VectorMap is an abstract base class that defines a mapping from some input vector of 
doubles to some output vector of doubles. Virtual functions are defined that return the 
dimension of the input and output spaces.

• Interpolator3dGridTo1d is an abstract class that specialises VectorMap to a mapping of a 3-
vector to a 1-vector. A ThreeDGrid is required in the constructor.

• TriLinearInterpolator specialises Interpolator3dGridTo1d to make a tri-linear interpolation 
from field values on the rectangular 3D grid.

• Interpolator3dGridto3d is an abstract class that specialises VectorMap to a mapping of a 3-
vector to a 3-vector. A 3D grid as well as field values on each of the grid points is required 
in the constructor. Additionally an interpolation routine definition is required in the 
constructor. Currently we use independent trilinear interpolators for each of the field values 
(Bx, By, Bz), although the structure outlined above makes this readily extensible to higher 
order interpolation or other algorithms such as FFT.

5.3 Field Routines

MAUS has an inheritance tree for field map routines also.

• BTField defined in src/legacy/BeamTools/BTField.hh,cc defines the abstraction for field 
map routines. Virtual functions are provided to access field values at a point, print a 
summary of the field, get bounding box size, get derivatives of the field map (e.g. for 
checking divB = 0), etc.

• SectorField defined in src/common_cpp/FieldTools/SectorField.hh,cc specialises BTField to 
provide additional routines for operation in a bent environment. For example, 
transformations are provided from cylindrical polar coordinates to Cartesian coordinates; 
transformations are provided to convert bounding boxes between polar coordinates and 
Cartesian coordinates. An additional function is provided to return field values in polar 
coordinates.

• SectorMagneticFieldMap defined in 
src/common_cpp/FieldTools/SectorMagneticFieldMap.hh,cc specialises SectorField with 
interfaces to the 3D interpolator and IO routines. Note that the grid in 
SectorMagneticFieldMap is on lines in (r, theta, y)

• SectorMagneticFieldMapIO defined in 
src/common_cpp/FieldTools/SectorMagneticFieldMap.hh,cc provides IO routines to 
generate an Interpolator3dGridto3d.

5.4 User Interface and Field Map Placement

MAUS additionally has routines to provide User Interfaces and to place field maps with arbitrary 
3D position and rotation. These routines will not be ported to OPAL.
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6 Task Breakdown

6.1 Implementation of 3D magnetostatic field map

The 3D field map routines from MAUS should be ported to OPAL.

• BTField inheritance will be replaced with MagneticFieldMap and child class function 
definitions will be modified appropriately.

• Where multiple classes have been placed into the same file these should be split into 
separate files.

• Dependencies on GSL and other third party libraries should be stripped out. There are no 
major dependencies on GSL, but a few small helper functions are invoked.

• MAUS exceptions will be replaced with OpalExceptions.

• Where comments are not sufficient (legacy code) comments should be improved. Typically, 
a long comment is expected explaining the purpose and data of a particular class. Additional 
comments are expected on every public member; the length of comments is dependent on 
the complexity of the function. Comments should be in Doxygen syntax.

• Style should be modified to fit OPAL style guide.

• Unit tests will not be ported.

• The following files will be added to classic/5.0/src/Fields

◦ VectorMap.h, VectorMap.cpp

◦ Interpolator3dGridTo1d.h, Interpolator3dGridTo1d.cpp

◦ Interpolator3dGridTo3d.h, Interpolator3dGridTo3d.cpp

◦ TriLinearInterpolator.h, TriLinearInterpolator.cpp

◦ Mesh.h, Mesh.cpp

◦ ThreeDGrid.h, ThreeDGrid.cpp

◦ SectorField.h, SectorField.cpp

◦ SectorMagneticFieldMap.h, SectorMagneticFieldMap.cpp

◦ SectorMagneticFieldMapIO.h, SectorMagneticFieldMapIO.cpp

6.2 Comment on Implementation of OPAL-T field maps as an OPAL-
CYCL element

The OPAL-T field maps are called assuming a linac-type geometry. Objects are placed serially. For 
example, one might place a Quadrupole, Drift, Quadrupole, Drift to set up a FODO cell. This is 
okay for a linac geometry, but for a ring geometry it is desirable to set additionally a radius and to 
check that the ring is closed (or otherwise). Also it should be noted that, as described previously, the 
tracking routines currently only check for fields in the first element of the beamline_list in the 
ParallelCyclotronTracker. As the ParallelCyclotronTracker is an extremely complicated piece of 
code, it is envisaged that this should be disturbed as little as possible.
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6.3 OpalRingDefinition

A new class, OpalRingDefinition, should be implemented in 
src/Elements/OpalRingDefinition.h,cpp inheriting from OpalElement. OpalRingDefinition provides 
necessary information defining the set up of a ring geometry. OpalRingDefinition should define the 
following attributes

CYHARMON Real Defines the assumed harmonic number of the ring.

LATTICE_RINIT Real Defines the initial radius of the first element to be placed in the 
ring.

LATTICE_PHIINIT Real Defines the initial angle around the ring of the first element to be 
placed.

LATTICETHETA_INIT Real Defines the angle relative to the tangent of the ring for the first 
element to be placed.

PHIINIT Real Defines the initial angle around the ring of the beam.

PRINIT Real Defines an initial pr momentum offset of the beam.

RINIT Real Defines the initial radius of the beam.

SYMMETRY Real Defines the symmetry properties of the lattice.

RFFREQ Real Defines the nominal RF frequency of the ring.

6.4 OpalRing

A new class, OpalRing should be added in src/Elements/OpalRing.h,cpp that should be analogous to 
OpalBeamline but additionally inheriting from Component. Ring should provide a function “apply” 
analogous to the Cyclotron::apply function and the OpalBeamline::getFieldAt function that returns 
the field at a given position in Cartesian coordinates by iterating over the element list, seeking the 
element at a particular position and setting the field from that element.

bool apply(const Vector_t &pos, const Vector_t &centroid, 
           const double &t, Vector_t &E, Vector_t &B);

Visit functions should be modified in ParallelCyclotronTracker to append elements to the OpalRing 
also. The first element in the ParallelCyclotronTracker beamline_list and myElements list should 
always point to OpalRing. In the case that a Cyclotron is defined, this should be called through the 
OpalRing. Backwards compatibility will be maintained but the call to acquire field information 
should always now go through OpalRing enabling a more sophisticated ring geometry composed of 
multiple beamline elements to be implemented.

Additionally

• OpalRing should hold accessors and mutators to control the alignment of the first element 
(radius, angle in ring coordinates, angle with respect to the tangent of the ring).

• OpalRing should throw an exception if the ring is not closed or the total bending angle is not 
360o (within a floating point tolerance of say 1e-9).

• OpalRing should throw an exception if the first element in the ring is not an 
OpalRingDefinition or a Cyclotron.
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6.5 OpalFieldMapWrite

A new class, OpalFieldMapWrite, should  be added to src/Elements/OpalFieldMapWrite.h,cpp. 
OpalFieldMapWrite 

• Holds a pointer to the OpalRing (set by ParallelCyclotronTracker::visitFieldMapWrite)

• Loops over each of the points in the grid

• Transforms the position to Cartesian coordinates

• Calls OpalRing::apply at each of the positions defined in the Mesh and stores the field 
values

• Transforms the field to ring coordinates.

• Writes the data to a file

The write loop should be called by OpalRing once 

The class should define the following attributes

START_PHI Real Defines the start phi angle of the field map file.

END_PHI Real Defines the end phi angle of the field map file.

START_R Real Defines the start radial position of the field map file.

END_R Real Defines the angle relative to the tangent of the ring for the first 
element to be placed.

START_Z Real Defines the initial angle around the ring of the beam.

END_Z Real Defines an initial pr momentum offset of the beam.

N_PHI Real Defines the initial radius of the beam.

N_Z Real Defines the symmetry properties of the lattice.

N_R Real Defines the nominal RF frequency of the ring.

FIELDMAPWRITEFN String Name of the file to which field map data will be written.

6.6 Modifications to ParallelCyclotronTracker

visit methods should be added or modified in ParallelCyclotronTracker for the following 
Components:

• OpalRingDefinition: should modify the OpalRing; presumably can only be visited once 
OpalRing is defined.

• OpalFieldMapWrite: should be added to the OpalRing.

• OpalRing: set OpalRing in ParallelCyclotronTracker to be the first member of the fields list

• Cyclotron: change the Cyclotron to make it the top member in the OpalRing fields list
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6.7 Testing

The following integration tests should be added:

• Track through a set of ERIT-style field map and checks that the closed orbit is in the 
expected position.

• Read in the ERIT-style field map and write it back out again; check that the input field map 
is the same as the output field map.

Cyclotron and other tests should continue to pass unmodified.

6.8 Documentation

New entries should be made for each of the new components added:

• OpalRing

• OpalRingDefinition

• OpalFieldMapWrite

• SectorMagneticFieldMap

6.9 Licence

Code will be distributed under the Modified BSD licence:

Copyright (c) 2012, Chris Rogers
All rights reserved.
Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are 
met: 
1. Redistributions of source code must retain the above copyright 
notice, this list of conditions and the following disclaimer. 
2. Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution.
3. Neither the name of STFC nor the names of its contributors may be 
used to endorse or promote products derived from this software without 
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7  Effort and Timescale

7.1 Effort Available

Chris Rogers will contribute at 50% level to this task
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7.2 Major Milestones

Item Time Due date (@ 50% FTE)

Implementation of 3D magnetostatic field map 1 week 24 September

OpalRingDefinition 3 days 31 September

OpalFieldMapWrite 3 days 7 October

Modifications to ParallelCyclotronTracker 3 days 14 October

Testing (and debugging) 1 week 28 October

Documentation 3 days 2 November
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